справочник юриста
Решение пределов образец
Первый замечательный предел
Первым замечательным пределом именуют следующее равенство:
Так как при $\alpha \to 0$ имеем $\sin \alpha \to 0$, то говорят, что первый замечательный предел раскрывает неопределённость вида $\frac <0> <0>$. Вообще говоря, в формуле (1) вместо переменной $\alpha$ под знаком синуса и в знаменателе может быть расположено любое выражение, - лишь бы выполнялись два условия:
- Выражения под знаком синуса и в знаменателе одновременно стремятся к нулю, т.е. присутствует неопределенность вида $\frac <0><0>$.
- Выражения под знаком синуса и в знаменателе совпадают.
Часто используются также следствия из первого замечательного предела:
На данной странице решены одиннадцать примеров. Пример №1 посвящен доказательству формул (2)-(4). Примеры №2, №3, №4 и №5 содержат решения с подробными комментариями. Примеры №6-10 содержат решения практически без комментариев, ибо подробные пояснения были даны в предыдущих примерах. При решении используются некоторые тригонометрические формулы, которые можно найти тут .
Замечу, что наличие тригонометрических функций вкупе с неопределённостью $\frac <0> <0>$ ещё не означает обязательное применение первого замечательного предела. Иногда бывает достаточно простых тригонометрических преобразований, - например, см. пример №11.
Пример №1
Решение
а) Так как $\mathrm
Так как $\cos 0=1$ и $ \lim_<\alpha \to 0> \frac <\sin \alpha ><\alpha>=1$, то $\lim_<\alpha \to 0> \frac <\sin \alpha><\alpha> \cdot \lim_<\alpha \to 0> \frac<1><\cos \alpha>=1\cdot 1=1$. Равенство доказано.
б) Сделаем замену $\alpha=\sin y$. Поскольку $\sin0=0$, то условия $\alpha \to 0$ и $y \to 0$ эквивалентны. Кроме того, в окрестности нуля $ \arcsin\alpha=\arcsin(\sin y)=y$, поэтому:
в) Сделаем замену $\alpha=\mathrm
Равенство $ \lim_<\alpha \to 0> \frac <\mathrm
Равенства а), б), в) часто используются наряду с первым замечательным пределом.
Так как $\lim_
Итак, оба условия, перечисленные в начале страницы, выполнены. Из этого следует, что применима формула (1). т.е. $\lim_
Так как $ \lim_
Теперь выражения в знаменателе и под знаком синуса совпали. Оба условия для предела $\lim_
Решение
Так как $\lim_
Пример №5
Решение
Так как $\lim_
Решение квадратного уравнения Решение квадратного уравнения онлайн
Решение системы уравнений Решение системы двух линейных уравнений онлайн
Решение неравенств Решение неравенств первой и второй степени, решение дробных неравенств
Каталог решённых неравенств Каталог неравенств с подробным решением
Приведение дробей к общему знаменателю Приведение дробей к общему знаменателю в режиме онлайн
Разложение дроби на сумму элементарных дробей Разложение дроби на сумму элементарных дробей в режиме онлайн
Решение кубического уравнения Решение кубического уравнения в режиме онлайн
Пределы функций. Примеры решений
Теория пределов – это один из разделов математического анализа. Вопрос решения пределов является достаточно обширным, поскольку существуют десятки приемов решений пределов различных видов. Существуют десятки нюансов и хитростей, позволяющих решить тот или иной предел. Тем не менее, мы все-таки попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике.
Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который дал строгие определения многим понятиям матана и заложил его основы. Надо сказать, этот уважаемый математик снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причём одна теорема убойнее другой. В этой связи мы пока не будем рассматривать определение предела по Коши . а попытаемся сделать две вещи:
1. Понять, что такое предел.
2. Научиться решать основные типы пределов.
Прошу прощения за некоторую ненаучность объяснений, важно чтобы материал был понятен даже чайнику, что, собственно, и является задачей проекта.
Итак, что же такое предел?
А сразу пример, чего бабушку лохматить….
Любой предел состоит из трех частей :
1) Всем известного значка предела .
2) Записи под значком предела, в данном случае . Запись читается «икс стремится к единице». Чаще всего – именно , хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().
3) Функции под знаком предела, в данном случае .
Сама запись читается так: «предел функции при икс стремящемся к единице».
Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
Понятие предела – это понятие, если так можно сказать, динамическое . Построим последовательность: сначала , затем , , …, , ….
То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают .
Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:
Готово.
Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию .
Мы рассмотрели простейший предел, но и такие встречаются на практике, причем, не так уж редко!
Пример с бесконечностью:
Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает, то есть: сначала , потом , потом , затем и так далее до бесконечности.
А что в это время происходит с функцией ?
, , , …
Итак: если , то функция стремится к минус бесконечности :
Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ .
Еще один пример с бесконечностью:
Опять начинаем увеличивать до бесконечности, и смотрим на поведение функции:
Вывод: при функция неограниченно возрастает :
И еще серия примеров:
Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:
, , , , , , , , ,
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
В том случае, если . попробуйте построить последовательность , , . Если , то , , .
Примечание . строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.
Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: , то все равно , так как рано или поздно «икс» примет такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом .
Что нужно запомнить и понять из вышесказанного?
1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.
2) Вы должны понимать и сразу решать простейшие пределы, такие как , , и т.д.
Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций . После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с очень интересными случаями, когда предела функции вообще не существует !
На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов.
Пределы с неопределенностью вида и метод их решения
Сейчас мы рассмотрим группу пределов, когда . а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены
Пример:
Вычислить предел
Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что , и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.
Как решать пределы данного типа?
Сначала мы смотрим на числитель и находим в старшей степени:
Старшая степень в числителе равна двум.
Теперь смотрим на знаменатель и тоже находим в старшей степени:
Старшая степень знаменателя равна двум.
Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.
Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени .
Разделим числитель и знаменатель на
Вот оно как, ответ , а вовсе не бесконечность.
Что принципиально важно в оформлении решения?
Во-первых, указываем неопределенность, если она есть.
Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.
В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:
Для пометок лучше использовать простой карандаш.
Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?
Пример 2
Найти предел
Снова в числителе и знаменателе находим в старшей степени:
Максимальная степень в числителе: 3
Максимальная степень в знаменателе: 4
Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .
Полное оформление задания может выглядеть так:
Разделим числитель и знаменатель на
Пример 3
Найти предел
Максимальная степень «икса» в числителе: 2
Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:
Разделим числитель и знаменатель на
Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.
Таким образом, при раскрытии неопределенности вида у нас может получиться конечное число . ноль или бесконечность.
Пределы с неопределенностью вида и метод их решения
Предвосхищаю вопрос от чайников: «Почему здесь деление на ноль? На ноль же делить нельзя!». Смысл записи 0:0 будет понятен позже, после ознакомления с четвёртым уроком о бесконечно малых функциях . А пока всем начинающим изучать математический анализ предлагаю читать далее.
Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу .
Пример 4
Решить предел
Сначала попробуем подставить -1 в дробь:
В данном случае получена так называемая неопределенность .
Общее правило . если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители .
Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики . Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.
Итак, решаем наш предел
Разложим числитель и знаменатель на множители
Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:
Сначала находим дискриминант:
И квадратный корень из него: .
В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе.
! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка.
Далее находим корни:
Таким образом:
Всё. Числитель на множители разложен.
Знаменатель. Знаменатель уже является простейшим множителем, и упростить его никак нельзя.
Очевидно, что можно сократить на :
Теперь и подставляем -1 в выражение, которое осталось под знаком предела:
Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:
Разложим числитель на множители.
Вычислить предел
Сначала «чистовой» вариант решения
Разложим числитель и знаменатель на множители.
Числитель:
Знаменатель:
,
Что важного в данном примере?
Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.
Рекомендация: Если в пределе (практически любого типа) можно вынести число за скобку, то всегда это делаем.
Более того, такие числа целесообразно выносить за значок предела . Зачем? Да просто чтобы они не мешались под ногами. Главное, потом эти числа не потерять по ходу решения.
Обратите внимание, что на заключительном этапе решения я вынес за значок предела двойку, а затем – минус.
! Важно
В ходе решения фрагмент типа встречается очень часто. Сокращать такую дробь нельзя . Сначала нужно поменять знак у числителя или у знаменателя (вынести -1 за скобки).
, то есть появляется знак «минус», который при вычислении предела учитывается и терять его совсем не нужно.
Вообще, я заметил, что чаще всего в нахождении пределов данного типа приходится решать два квадратных уравнения, то есть и в числителе и в знаменателе находятся квадратные трехчлены.
Метод умножения числителя и знаменателя на сопряженное выражение
Продолжаем рассматривать неопределенность вида
Следующий тип пределов похож на предыдущий тип. Единственное, помимо многочленов, у нас добавятся корни.
Пример 6
Найти предел
Начинаем решать.
Сначала пробуем подставить 3 в выражение под знаком предела
Еще раз повторяю – это первое, что нужно выполнять для ЛЮБОГО предела . Данное действие обычно проводится мысленно или на черновике.
Получена неопределенность вида , которую нужно устранять.
Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по-возможности, избавляться. Зачем? А без них жизнь проще.
Когда в числителе (знаменателе) находится разность корней (или корень минус какое-нибудь число), то для раскрытия неопределенности используют метод умножения числителя и знаменателя на сопряженное выражение .
Вспоминаем нашу нетленную формулу разности квадратов:
И смотрим на наш предел:
Что можно сказать? у нас в числителе уже есть. Теперь для применения формулы осталось организовать (которое и называется сопряженным выражением ).
Умножаем числитель на сопряженное выражение :
Обратите внимание, что под корнями при этой операции мы ничего не трогаем.
Хорошо, мы организовали, но выражение-то под знаком предела изменилось! А для того, чтобы оно не менялось, нужно его разделить на то же самое, т.е. на :
То есть, мы умножили числитель и знаменатель на сопряженное выражение .
В известной степени, это искусственный прием.
Умножили. Теперь самое время применить вверху формулу :
Неопределенность не пропала (попробуйте подставить тройку), да и корни тоже не исчезли. Но с суммой корней всё значительно проще, ее можно превратить в постоянное число. Как это сделать? Да просто подставить тройку под корни:
Число, как уже отмечалось ранее, лучше вынести за значок предела.
Теперь осталось разложить числитель и знаменатель на множители и сократить «виновников» неопределённости, ну а предел константы – равен самой константе:
Готово.
Как должно выглядеть решение данного примера в чистовом варианте?
Примерно так:
Умножим числитель и знаменатель на сопряженное выражение.
Пример 7
Найти предел
Сначала попробуйте решить его самостоятельно.
Окончательное решение примера может выглядеть так:
Примеры решения пределов
То, что предел функции при стремящемся к равен , записывается следующим образом:
При этом значение, к которому стремится переменная , может быть не только числом, но и бесконечностью (), в некоторых случаях или , или вовсе предел может не существовать.
ПРИМЕР 1
Задание
Решение
Первый предел. Для нахождения данного предела достаточно подставить вместо число, к которому оно стремиться, то есть 2, получим
Второй предел. В данном случае подставлять в чистом виде 0 вместо нельзя, так как получим деление на 0. Можно рассматривать значения близкие к нулю, например, подставлять 0,01 0,001 0,0001 0,00001 и т. д. при этом значение функции будет возрастать: 100 1000 10000 100000 и т. д. Таким образом, можно сделать вывод о том, что при значение функции, стоящей под знаком предела, будет неограниченно возрастать, то есть стремиться к бесконечности. А значит:
Третий предел. Здесь, как и в предыдущем случае, нельзя подставить в чистом виде. Необходимо рассмотреть случай неограниченного возрастания . Подставляя 1000 10000 100000 и т.д. получим, что значение функции будет убывать: 0,001 0,0001 0,00001 и т.д. стремясь к нулю. Таким образом,
Ответ
Примеры решений пределов
На данной странице Вы можете посмотреть примеры решений пределов . В таком виде решения представляются Вам при заказе работы у нас. При желании степень подробности решения может меняться.
Пределы — это одна из первых тем, которую проходят в курсе «Высшей математики» или «Математического анализа». И неудивительно, что у многих первокурсников есть проблемы с решением примеров и заданий по данной теме. Дело в том, что при решении пределов, существует ограниченный, но довольно широкий набор неопределенностей, каждый вид которых решается определенным методом.
Множество примеров решений пределов и полезной информации ищите на следующих страницах:
Пределы. Теория и практика – здесь Вы найдете теоретический материал, посвященный данной теме, а также огромное множество разобранных практических заданий.
Видеолекция по теме: «Функция и предел функции». – поможет тем, кому надо усвоить начальные сведения о пределах.
Источники:
Следующие статьи:
26 декабря 2024 года
Комментариев пока нет!